COMMUTATIVE GRADED-N-COHERENT AND GRADED VALUATION RINGS
نویسندگان
چکیده
Let $R= \oplus_{ \alpha \in G} R_{\alpha}$ be a commutative ring with unity graded by an arbitrary grading monoid $G$. For each positive integer, the notions of graded-n-coherent module and are introduced. In this paper many results generalized from $n$-coherent rings to graded-$n$-coherent rings. last section, we provide necessary sufficient conditions for trivial extension graded-valuation ring.
منابع مشابه
Graded Cohen-macaulayness for Commutative Rings Graded by Arbitrary Abelian Groups
We consider a commutative ring R graded by an arbitrary abelian group G, and define the grade of a G-homogeneous ideal I on R in terms of vanishing of C̆ech cohomology. By defining the dimension in terms of chains of homogeneous prime ideals and supposing R satisfies a.c.c. on G-homogeneous ideals and has a unique G-homogeneous maximal ideal, we can define graded versions of the depth of R and C...
متن کاملSome Properties of Non-commutative Regular Graded Rings
Introduction. Let A be a noetherian ring. When A is commutative (of finite Krull dimension), A is said to be Gorenstein if its injective dimension is finite. If A has finite global dimension, one says that A is regular. If A is arbitrary, these hypotheses are not sufficient to obtain similar results to those of the commutative case. To remedy this problem, M. Auslander has introduced a suppleme...
متن کاملGraded Commutative Algebras : Examples
We consider Γ-graded commutative algebras, where Γ is an abelian group. Starting from a remarkable example of the classical algebra of quaternions and, more generally, an arbitrary Clifford algebra, we develop a general viewpoint on the subject. We then give a recent classification result and formulate an open problem.
متن کاملSimple Graded Commutative Algebras
We study the notion of Γ-graded commutative algebra for an arbitrary abelian group Γ. The main examples are the Clifford algebras already treated in [2]. We prove that the Clifford algebras are the only simple finitedimensional associative graded commutative algebras over R or C. Our approach also leads to non-associative graded commutative algebras extending the Clifford algebras.
متن کاملGraded Rings and Modules
1 Definitions Definition 1. A graded ring is a ring S together with a set of subgroups Sd, d ≥ 0 such that S = ⊕ d≥0 Sd as an abelian group, and st ∈ Sd+e for all s ∈ Sd, t ∈ Se. One can prove that 1 ∈ S0 and if S is a domain then any unit of S also belongs to S0. A homogenous ideal of S is an ideal a with the property that for any f ∈ a we also have fd ∈ a for all d ≥ 0. A morphism of graded r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe journal of mathematics and statistics
سال: 2022
ISSN: ['1303-5010']
DOI: https://doi.org/10.15672/hujms.947574